
CGGMP Specification

1 Introduction

We provide a specification for our implementation of the CGGMP threshold signing protocol [1].

2 Notation and Preliminaries

E denotes an elliptic-curve group of prime order1 q with generator G. If P ∈ E is a point on the
curve, then P |x denotes the x-coordinate of P . We let Zn = [n] = {0, . . . , n− 1}, and let Z∗

n be the
subset of elements of Zn co-prime to n, i.e., Z∗

n = {i | i ∈ Zn ∧ gcd(i, n) = 1}. For integers a, b, ℓ,
we set [a; b) = {a, . . . , b − 1} and ±ℓ = {−ℓ, . . . , 0, . . . , ℓ}. We write x ← X to denote sampling a
uniform element x from a set X.

2.1 Safe-Prime Generation

A safe prime p has the form p = 2p′ + 1 where p′ is also prime. Assuming a primality test IsPrime,
a trivial way to generate a (random) safe prime is to repeatedly sample p′ in the appropriate range,
test p′ for primality, and then (if p′ is prime) test 2p′+1 for primality. (We ignore here the possibility
of error in IsPrime.)

Primality testing is expensive, and the trivial algorithm is wasteful in the sense that it tests p′

for primality even when it is clear that p = 2p′ + 1 will not be prime (e.g., if p′ = 1 mod 3). We
can avoid this by using simple sieving, as in Algorithm 1 (following [3]).

Algorithm 1 Generating a (random) safe prime

1: Let B be a set containing the first n odd primes // n is a parameter
2: while (1) do
3: Choose (random) p′ in the appropriate range
4: If p′ mod q ∈ {0, (q − 1)/2} for some q ∈ B continue
5: If (!IsPrime(p′)) continue
6: If (IsPrime(2p′ + 1)) return p = 2p′ + 1

The number of primes n to use for sieving is a parameter that can be heuristically optimized.
Note that as n increases, the marginal benefit of sieving decreases while the cost of sieving increases.

1The curve order is denoted by curve order in the code. Note that q is also used for the verifier’s challenge space
in [1], but we use Q for that instead.

1



2.2 Using the Chinese Remainder Theorem

Arithmetic modulo N can be optimized when the (partial) factorization of N is known. Say
N = N1 · N2 where N1, N2 > 1 and gcd(N1, N2) = 1. (Note that N1, N2 need not be prime.)
Then a computation modulo N can be optimized by (1) separately carrying out the computation
modulo N1 and N2, and then (2) combining the results. We illustrate the for the particular case
of exponentiation (i.e., computing sx mod N), but the same idea can be applied for multiplication,
multiexponentiation, etc.

Exponentiation modulo N1, N2. Computing sx mod N1 and sx mod N2 will, in general, be
faster than computing sx mod N directly because (1) N1, N2 are shorter than N , and (2) assuming
the factorizations of N1, N2 are known, we can reduce the exponent x modulo ϕ(N1) (resp., ϕ(N2))
before performing the respective exponentiations. Namely, we can use the fact that, e.g.,

sx mod N1 = sx mod ϕ(N1) mod N1

(assuming gcd(s,N1) = 1.)

Combining the results. Let β = N−1
1 mod N2. If we have computed r1 = sx mod N1 and

r2 = sx mod N2, we can compute sx mod N as

r1 + ((r2 − r1) · β mod N2) ·N1.

(Note that no reduction modulo N is needed, and the result will already be in the correct range.)
To see that this gives the correct answer, note that

r1 + ((r2 − r1) · β mod N2) ·N1 = r1 mod N1

r1 + ((r2 − r1) · β mod N2) ·N1 = r1 +
(
(r2 − r1) ·N−1

1

)
·N1 = r2 mod N2.

In our context, the case of interest is when the modulus is N2 = p2q2 and the factors p, q are
known. Algorithm 2 shows a complete algorithm for exponentiation modulo N2 in that case.

Algorithm 2 Computing sx mod N2, whereN2 = p2q2 with p, q distinct primes and gcd(s,N2) = 1

1: β := p−2 mod q2 // this can be computed in a preprocessing step
2: ϕ1 = p · (p− 1), ϕ2 := q · (q − 1)
3: x1 := x mod ϕ1, x2 := x mod ϕ2
4: s1 := s mod p2, s2 := s mod q2

5: r1 := sx1
1 mod p2, r2 := sx2

2 mod q2

6: res := r1 + ((r2 − r1) · β mod q2) · p2
7: return res

2.3 Paillier Encryption Scheme

We include a description of the algorithms that constitute the Paillier encryption scheme.

1. keygen generates a private key sk consisting of two safe primes, with the public key being
their product N .

2



2. encN (M ; r) encrypts a message M ∈ {−(N − 1)/2, . . . , (N − 1)/2} using randomness r ∈ Z∗
N

and Paillier public key N . This produces a ciphertext C ∈ Z∗
N2 . Encryption checks that

gcd(r,N) = 1 (and raises an error if not), and then computes

encN (M ; r) := (1 +M ·N) · rN mod N2

We also provide a function encN (M) that samples uniform r ∈ Z∗
N and returns encN (M ; r).

Functions enccrtsk (M ; r) and enccrtsk (M) are analogous but achieve better performance by using
the technique from Section 2.2 when the factorization of N is known.

3. decsk(C) decrypts a ciphertext C ∈ Z∗
N2 to a plaintext M ∈ {−(N − 1)/2, . . . , (N − 1)/2}.

4. C1 ⊕ C2 denotes homomorphic addition of ciphertexts C1, C2 ∈ Z∗
N2 encrypted under the

same Paillier public key N . It is computed as C1 ⊕ C2 = C1 · C2 mod N2. Note that
dec(C1 ⊕ C2) = [dec(C1) + dec(C2) mod N ].

5. k⊙C denotes homomorphic multiplication of a ciphertext C ∈ Z∗
N2 by k ∈ Z. It is computed

as k ⊙ C = Ck mod N2. Note that dec(k ⊙ C) = [k · dec(C) mod N ].

2.4 Speeding up Fixed-Based Multiexponentiation Using Preprocessing

Execution of the protocol involves many computations of the form sxty mod N , where s, t,N are
fixed (and known in advance) but the exponents x, y vary. For the purposes of this section we view
this as a multiexponentiation with respect to the bases s, t in a generic group, and so ignore N . Ef-
ficiency of these multiexponentiations can be improved by using one-time preprocessing to generate
a small amount of state that is used to speed up subsequent computations.

Say −ℓx < x < ℓx and −ℓy < y < ℓy, where typically ℓx, ℓy are powers of 2. In describing
the algorithm, we assume x, y are nonnegative; we can handle negative exponents by also pre-
computing s−ℓx and t−ℓy and then, e.g., when x is negative write sxty =

(
s−ℓx

)
·
(
sx+ℓxty

)
with

x+ ℓx > 0. The algorithm is parameterized by a value B which is also typically a power of 2 (in
practice, taking B ∈ {24, 28} is a good choice); it stores TB ≈ (log ℓx + log ℓy)/ lgB group elements
and requires ≈ B + TB group operations to compute a multiexponentiation. See Algorithm 3.

Algorithm 3 Computing sxty; parameterized by B ≥ 2; let k′x = ⌈|x|/ lgB⌉, k′y = ⌈|y|/ lgB⌉

1: in preprocessing step, compute si := sB
i
for i ∈ {0, . . . , k′x − 1}

2: in a preprocessing step, compute ti := tB
i
for i ∈ {0, . . . , k′y − 1}

3: let xk′x−1 · · ·x0 and yk′y−1 · · · y0 be the base-B representations of x and y, respectively
4: res := 1, tmp := 1
5: for b = B − 1, . . . , 1 do
6: for all i such that yi = b do
7: tmp := tmp · ti
8: for all i such that xi = b do
9: tmp := tmp · si

10: res := res · tmp

11: return res

3



We refer to ({si}k
′
x

i=0, {ti}
k′y
i=0) as a table Ti. Precomputation of a table is only done once, so the

efficiency of doing so is not critical; nevertheless, for completeness, we describe an algorithm for
computing the {si}i∈{0,...,k′x−1}. (The same algorithm can be used for computing the {ti} as well.)

Algorithm 4 Computing {si}ki=0, where si = sB
i

1: s0 := s
2: for i = 1, . . . , k do
3: si := sBi−1

Assuming B is a power of 2, the exponentiation in line 3 requires lgB squarings; the algorithm
thus uses only k lgB squarings overall.

2.5 Security Parameters

The protocol relies on several user-defined parameters that determine its security. Note these do
not include the curve order q, which is fixed by the underlying signature scheme rather than by the
threshold protocol itself. We let λ denote the bit length of the curve order (so 2λ ≤ q < 2λ+1) and
assume λ ≥ 256 (which is the case for the signature schemes we support).

The security parameters of the protocol are denoted collectively by L = (κ, ε, ℓ, ℓ′,m,Q). These
parameters are used in the following ways:

– κ determines the length of the primes used for Paillier private keys. Specifically, the primes
are chosen to be of length 4κ and so the Paillier modulus has length 8κ.

– ℓ, ℓ′ correspond to bounds on the ranges of certain plaintexts that are encrypted, while ε is a
slack parameter. (Honest parties choose plaintexts in a range determined by ℓ or ℓ′; the zero-
knowledge proofs, however, only prove that a party chose plaintexts in a range determined
by ℓ+ ε or ℓ′ + ε.)

– m denotes the number of iterations of some underlying zero-knowledge protocol to run; the
soundness error will be 2−m.

– Q determines the challenge space for some of the zero-knowledge proofs.

For correctness, we require ℓ ≥ λ, ϵ ≥ 8 + logQ, and ℓ′ ≤ 8κ. We also recommend Q = 2m since it
can only hurt efficiency (while not improving security) otherwise.

2.5.1 Security Guidelines

Let s ≤ 256 be a statistical security parameter, so the goal is to achieve roughly 2−s “privacy loss”
in one execution of the protocol. Parameters can be set using the following guidelines:

– κ should be set based on current estimates regarding hardness of factoring. Setting κ =
384 (so moduli are 3072-bits long) matches NIST recommendations for achieving 128-bit
computational security, which is consistent with the security obtained by using λ = 256.

– ℓ needs to be set such that 2ℓ+1 ≥ q; setting ℓ ≥ λ ensures this. Some of the zero-knowledge
proofs have privacy loss and soundness error at least 2−ℓ, but since ℓ = λ ≥ s that is fine.

4



– Q and m determine the soundness error of several of the zero-knowledge proofs, with some of
the proofs having soundness error at least 1/Q and others having soundness error at least 2−m.
It thus makes sense to set Q = 2m (as recommended above). Setting Q = 2128 (and m = 128)
suffices for 128-bit security. Note: while it is possible to increase Q without any significant
direct impact on efficiency, increasing Q requires increasing ϵ, ℓ′, which does impact efficiency.

– ϵ affects both the completeness error and the privacy loss of several of the zero-knowledge
proofs. Since some proofs have privacy loss at least 4Q/2ϵ, this requires ϵ ≥ 2 + s+ logQ.

– ℓ′ needs to be set large enough so that adding noise from ±2ℓ′ statistically hides a (2λ+ ϵ)-bit
value. This requires ℓ′ ≥ 2λ+ ϵ+ s.

If the above guidelines are used, the interaction between one honest party and one malicious party
during an execution of the signing protocol has privacy loss upper-bounded by 8 ·2−s (this accounts
for all the zero-knowledge proofs as well as the noise used for statistically hiding different values).
If we assume t − 1 malicious parties and n − t + 1 honest parties, the overall privacy loss in an
execution of the protocol is at most 8 · (n− t+ 1) · (t− 1) · 2−s.

3 Zero-Knowledge Proofs

In this section we describe the various zero-knowledge proofs that are used as sub-routines in the
protocol. In each case we first describe an interactive version of the proof; we then describe how
we implement a non-interactive version of the proof using the Fiat-Shamir transform.

3.1 Πenc: Paillier Encryption in Range

We assume the prover and verifier agree on shared state state, auxiliary data Rj = (Nj , sj , tj) with
sj , tj ∈ Z∗

Nj
, and a security level L. The prover and verifier have common input (Ni,K), and the

prover additionally has secret input (k, ρ) such that k ∈ ±2ℓ and K = encN0(k; ρ). In all the
cases where this proof is used in the protocol, the prover knows the factorization of Ni (and thus
knows ski) and the verifier knows the factorization of Nj (and thus knows skj).

3.1.1 Interactive Version of the Proof

1. In the first round of the protocol, the prover does the following:

– The prover samples the following values:

α← ±2ℓ+ε, µ← ±(2ℓ ·Nj), r ← Z∗
Ni
, γ ← ±(2ℓ+ε ·Nj).

– The prover then computes:

– S = skj t
µ
j mod Nj

– A = encNi(α; r) (this is computed as enccrtski
(α; r) if ski is known)

– C = sαj t
γ
j mod Nj .

Note that S and C are computed using fixed-based multiexponentiations.

– The prover sends first message (S,A,C), and maintains local (secret) state (α, µ, r, γ).

5



2. The verifier chooses e← ±Q and sends e to the prover.

3. On input (Ni,K), challenge e, and local state including (k, ρ), (α, µ, r, γ), the prover computes:

– z1 = α+ ek

– z2 = r · ρe mod Ni

– z3 = γ + eµ.

It then sends (z1, z2, z3) to the verifier.

4. Given (Ni,K), initial message (S,A,C), challenge e, and response (z1, z2, z3), the verifier
accepts if and only if all the following are true:

– A⊕ (e⊙K) = encNi(z1; z2) mod N2
i

– sz1j t
z3
j = C · Se mod Nj

– z1 ∈ ±2ℓ+ε.

Note the second computation involves a fixed-based multiexponentiation.

3.1.2 Non-Interactive Version of the Proof

– We deterministically derive a challenge by applying a hash function to inputs that include
state, auxiliary data Rj , the common input (Ni,K), and the initial protocol message (S,A,C).
We write the resulting function as e = ChallengeNILenc(state, Rj , (Ni,K), (S,A,C)).

– The prover generates a proof as follows: first it computes (S,A,C) as described above; then
it computes e = ChallengeNILenc(state, Rj , (Ni,K), (S,A,C)); next, it computes (z1, z2, z3)
as described above, using the challenge e. Finally, it outputs the proof ((S,A,C), (z1, z2, z3)).
We write the resulting function as ProveNILenc(state, Rj , (Ni,K), (k, ρ)).

– A party verifies a proof ψ = ((S,A,C), (z1, z2, z3)) by first computing

e = ChallengeNILenc(state, Rj , (Ni,K), (S,A,C))

and then verifying as described above, using the challenge e. We write the resulting function
as VerifyNILenc(state, Rj , (Ni,K), ψ).

3.2 Πaff-g: Paillier Affine Operation with Group Commitment in Range

We assume the prover and verifier agree on shared state state, auxiliary data2 Rj = (Nj , sj , tj)
with sj , tj ∈ Z∗

Nj
, an elliptic curve E of prime order q with generator G, and a security level L.

For this proof, the prover and verifier have common input (Nj , Ni, C,D, Y,X) where C,D ∈ Z∗
N2

j
,

Y ∈ Z∗
N2

i
, and X ∈ E, and the prover additionally has secret input (x, y, ρ, ρy) such that x ∈ ±2ℓ,

y ∈ ±2ℓ′ , ρ ∈ Z∗
Nj

, ρy ∈ Z∗
Ni
, D = (x ⊙ C) ⊕ encNj (y; ρ), Y = encNi(y; ρy), and X = x ·G. In all

the cases where this proof is used in the protocol, the prover knows the factorization of Ni (and
hence knows ski) and the verifier knows the factorization of Nj (and hence knows skj).

2In [1], the auxiliary data is an arbitrary modulus N̂ . In the protocol, however, it always holds that N̂ = Nj .

6



3.2.1 Interactive Version of the Proof

1. In the first round of the protocol, the prover does the following:

– The prover samples the following values:

α← ±2ℓ+ε, r ← Z∗
Nj
, γ, δ ← ±(2ℓ+ε ·Nj)

β ← ±2ℓ′+ε, ry ← Z∗
Ni
, m, µ← ±(2ℓ ·Nj).

– The prover then computes:

– A = (α⊙ C)⊕ encNj (β; r)

– Bx = α ·G
– By = encNi(β; ry) (this is computed as enccrtski

(β; ry) if ski is known)

– E = sαj t
γ
j mod Nj , S = sxj t

m
j mod Nj

– F = sβj t
δ
j mod Nj , T = syj t

µ
j mod Nj .

Note that the final two sets of computations are fixed-based multiexponentiations.

– The prover sends first message (A,Bx, By, E, S, F, T ), and maintains local (secret) state
(α, β, r, ry, γ, δ,m, µ).

2. The verifier chooses e← ±Q and sends e to the prover.

3. On input (Nj , Ni, C,D, Y,X), the challenge e, and local state that includes (x, y, ρ, ρy),
(α, β, r, ry, γ, δ,m, µ), the prover computes:

z1 = α+ ex

z2 = β + ey

z3 = γ + em

z4 = δ + eµ

w = r · ρe mod Nj

wy = ry · ρey mod Ni,

and sends (z1, z2, z3, z4, w, wy) to the verifier.

4. Given (Nj , Ni, C,D, Y,X), initial message (A,Bx, By, E, S, F, T ), challenge e, and response
(z1, z2, z3, z4, w, wy), the verifier accepts if and only if all the following are true:

A⊕ (e⊙D) = (z1 ⊙ C)⊕ enccrtskj (z2;w) mod N2
j

z1 ·G = Bx + e ·X
By ⊕ (e⊙ Y ) = encNi(z2;wy) mod N2

i

sz1j t
z3
j = E · Se mod Nj

sz2j t
z4
j = F · T e mod Nj

z1 ∈ ±2ℓ+ε

z2 ∈ ±2ℓ
′+ε.

Note that two of the above computations involve fixed-base multiexponentiations.

7



3.2.2 Non-Interactive Version of the Proof

– We deterministically derive a challenge by applying a hash function to inputs that include
state, the auxiliary data Rj , the common input (Nj , Ni, C,D, Y,X), and the initial protocol
message (A,Bx, By, E, S, F, T ). We write the resulting function as

e = ChallengeNILaff-g(state, Rj , (Nj , Ni, C,D, Y,X), (A,Bx, By, E, S, F, T )).

– The prover generates a proof as follows: it computes its initial message (A,Bx, By, E, S, F, T )
as described above; then it computes

e = ChallengeNILaff-g(state, Rj , (Nj , Ni, C,D, Y,X), (A,Bx, By, E, S, F, T ));

next, it computes (z1, z2, z3, z4, w, wy) as described above, using the challenge e. Finally, it
outputs the proof ((A,Bx, By, E, S, F, T ), (z1, z2, z3, z4, w, wy)). We write the resulting func-

tion as ProveNIE,Laff-g(state, Rj , (Nj , Ni, C,D, Y, C); (x, y, ρ, ρy)).

– A party verifies a proof ψ = ((A,Bx, By, E, S, F, T ), (z1, z2, z3, z4, w, wy)) by first computing

e = ChallengeNILaff-g(state, Rj , (Nj , Ni, C,D, Y,X), (A,Bx, By, E, S, F, T ))

and then verifying as described above, using the challenge e. We write the resulting function
as VerifyNIE,Laff-g(state, Rj , (Nj , Ni, C,D, Y,X), ψ).

3.3 Πmod: Paillier-Blum Modulus

The prover and verifier agree on shared state state and a security level L (which determines m).
For this proof, the prover and verifier have common input N , and the prover additionally has as
secret input primes p, q = 3 mod 4 such that N = pq.

3.3.1 Interactive Version of the Proof

1. In the first round of the protocol, the prover samples uniform w ∈ ZN with Jacobi symbol(
w
N

)
= −1. It sends w to the verifier and maintains local state w.

2. The verifier chooses uniform yi ∈ ZN for i = 1, . . . ,m.

3. Given N , the challenge y1, . . . , ym, and local state that includes p, q, w, the prover does the
following for i = 1, . . . ,m:

(a) Compute ai, bi ∈ {0, 1} such that y′i = (−1)aiwbiyi mod N is a quadratic residue mod-
ulo N .

(b) Let xi be the principal3 4th root of y′i modulo N .

(c) Compute N ′ = N−1 mod ϕ(N) and set zi = yN
′

i mod N .

Send {(xi, ai, bi, zi)}mi=1 to the verifier.

3This means that xi is itself a quadratic residue.

8



4. Given N , initial message w, challenge {yi}mi=1, and response {(xi, ai, bi, zi)}mi=1, the verifier
accepts if and only if all the following are true:

(a) N is an odd non-prime.

(b) For i ∈ {1, . . . ,m}:
– zNi = yi mod N .

– x4i = (−1)aiwbiyi mod N .

3.3.2 Non-Interactive Version of the Proof

– We deterministically derive a challenge by applying a hash function to inputs that include
state, the common input N , and the initial protocol message w. We write the resulting
function as (y1, . . . , ym) = ChallengeNILmod(state, N,w).

– The prover generates a proof by first computing its initial message w as described above; then
it computes (y1, . . . , ym) = ChallengeNILmod(state, N,w); next, it computes {(xi, ai, bi, zi)}mi=1

as described above, using the challenge {yi}mi=1. It outputs the proof (w, {(xi, ai, bi, zi)}mi=1).
We write the resulting function as ProveNILmod((state, N), (p, q)).

– A party verifies a proof (w, {(xi, ai, bi, zi)}mi=1) by first computing

(y1, . . . , ym) = ChallengeNILmod(state, N,w)

and then verifying as described above, using the challenge {yi}mi=1.

3.4 Πprm: Ring-Pedersen Parameters

The prover and verifier agree on shared state state and security level L (which determines m).
For this proof, the prover and verifier have common input (N, s, t) with s, t ∈ Z∗

N , and the prover
additionally has secret input λ such that s = tλ mod N , along with the factorization of N .

3.4.1 Interactive Version of the Proof

1. In the first round of the protocol, the prover first does the following for i = 1, . . . ,m:

– The prover samples ai ← Zϕ(N).

– The prover computes Ai = tai mod N .

The prover then sends first message {Ai}mi=1 and maintains local (secret) state {ai}mi=1.

2. For i = 1, . . . ,m, the verifier chooses ei ← {0, 1}, and sends {ei}mi=1 to the prover.

3. On input N, s, t, the challenge {ei}mi=1, and local state including ϕ(N), λ, and the {ai}mi=1, for
i = 1, . . . ,m the prover computes zi = ai + ei · λ mod ϕ(N). It sends {zi}mi=1 to the verifier.

4. Given N, s, t, initial message {Ai}mi=1, challenge {ei}mi=1, and response {zi}mi=1, the verifier
accepts if and only if tzi = Ais

ei mod N for i = 1, . . . ,m.

9



3.4.2 Non-Interactive Version of the Proof

– We deterministically derive a challenge by hashing inputs that include state, the common
input (N, s, t), and the initial protocol message {Ai}mi=1. We write the resulting function as
{ei}mi=1 = ChallengeNILprm(state, N, s, t, {Ai}mi=1).

– The prover generates a proof as follows: first, it computes its initial message {Ai}mi=1 as
described above; then it computes {ei}mi=1 = ChallengeNILprm(state, N, s, t, {Ai}mi=1); next, it
computes {zi}mi=1 as described above, using the challenge {ei}mi=1. Finally, it outputs the proof
({Ai}mi=1, {zi}mi=1). We write the resulting function as ProveNILprm(state, (N, s, t), (ϕ, λ)).

– A party verifies a proof ψ = ({Ai}mi=1, {zi}mi=1) for (N, s, t) by setting

{ei}mi=1 = ChallengeNILprm(state, N, s, t, {Ai}mi=1)

and then verifying as described above, using the challenge {ei}mi=1. We write the resulting
function as VerifyNILprm(state, (N, s, t), ψ).

3.5 Πlog∗: Group Element vs. Paillier Encryption in Range

The prover and verifier agree on shared state state, auxiliary data Rj = (Nj , sj , tj) with sj , tj ∈ Z∗
Nj

,
an elliptic curve E of prime order q with generator G, and a security level L. For this proof, the
prover and verifier have common input (Ni, C,X,B) with C ∈ Z∗

N2
i
and X,B ∈ E, and the prover

additionally has secret input (x, ρ) such that x ∈ ±2ℓ, C = encNi(x; ρ), and X = x · B. In all the
cases where this proof is used in the protocol, the prover knows the factorization of Ni (and hence
knows ski) and the verifier knows the factorization of Nj (and hence knows skj).

3.5.1 Interactive Version of the Proof

1. In the first round of the protocol, the prover does the following:

– The prover samples the following values:

α← ±2ℓ+ε

µ← ±(2ℓ ·Nj)

r ← Z∗
N0

γ ← ±(2ℓ+ε ·Nj).

– The prover then computes:

– S = sxj t
µ
j mod Nj

– A = encNi(α; r) (this is computed as enccrtski
(α; r) when ski is known)

– Y = α ·B
– D = sαj t

γ
j mod Nj .

Note that S and D are computed using fixed-base multiexponentiations.

– The prover sends first message (S,A, Y,D) and maintains local (secret) state (α, µ, r, γ).

2. The verifier chooses e← ±Q and sends e to the prover.

10



3. On input (Ni, C,X,B), the challenge e, and local state that includes (x, ρ), (α, µ, r, γ), the
prover computes:

z1 = α+ ex

z2 = r · ρe mod Ni

z3 = γ + eµ,

and sends (z1, z2, z3) to the verifier.

4. Given (Ni, C,X,B), initial message (S,A, Y,D), challenge e, and response (z1, z2, z3), the
verifier accepts if and only if the following are true:

encNi(z1; z2) = A⊕ (e⊙ C) mod N2
i

z1 ·B = Y + e ·X
sz1j t

z3
j = D · Se mod Nj

z1 ∈ ±2ℓ+ε.

3.5.2 Non-Interactive Version of the Proof

– We deterministically derive a challenge by hashing inputs that include state, the auxiliary
data Rj , the common input (Ni, C,X,B), and the initial protocol message (S,A, Y,D). We

write the resulting function as e = ChallengeNI
E,L
log∗(state, Rj , (Ni, C,X,B), (S,A, Y,D)).

– The prover generates a proof by first computing its initial message (S,A, Y,D) as described
above, then computing e = ChallengeNI

E,L
log∗(state, Rj , (Ni, C,X,B), (S,A, Y,D)), and next

computing (z1, z2, z3) as described above, using challenge e. It outputs the proof ((S,A, Y,D),
(z1, z2, z3)). We write the resulting function as ProveNIE,Llog∗(state, Rj , (Ni, C,X,B); (x, ρ)).

– A party verifies a proof ψ − ((S,A, Y,D), (z1, z2, z3)) by first computing

e = ChallengeNI
E,L
log∗(state, Rj , (Ni, C,X,B), (S,A, Y,D))

and then verifying as described above, using the challenge e. We write the resulting function
as VerifyNIE,Llog∗(state, Rj , (Ni, C,X,B), ψ).

3.6 Πfac: No Small Factor Proof

The prover and verifier agree on shared state state, auxiliary data Rj = (Nj , sj , tj) with sj , tj ∈ Z∗
Nj

,
and a security level L. For this proof, the prover and verifier have common input Ni, and the prover
additionally has primes 2ℓ < p, q < ±2ℓ ·

√
Ni with Ni = pq. In all the cases where this proof is

used in the protocol, the verifier knows the factorization of Nj (and hence knows skj).

3.6.1 Interactive Version of the Proof

1. In the first round of the protocol, the prover does the following:

– The prover samples the following values:

α, β ← ±
(
2ℓ+ε
√
Ni

)
µ, ν ← ±

(
2ℓNj

)
11



σ ← ±
(
2ℓNiNj

)
r ← ±

(
2ℓ+εNiNj

)
x, y ← ±

(
2ℓ+εNj

)
.

– The prover then computes:

– P = spj t
µ
j mod Nj

– Q = sqjt
ν
j mod Nj

– A = sαj t
x
j mod Nj

– B = sβj t
y
j mod Nj

– T = Qαtrj mod Nj .

Note that P,Q,A,B are computed using fixed-base multiexponentiations.

– The prover sends the first message (P,Q,A,B, T, σ) and also maintains local (secret)
state (α, β, µ, ν, r, x, y).

2. The verifier chooses e← ±Q and sends e to the prover.

3. On input Ni, the challenge e, and local state that includes (p, q), σ, and (α, β, µ, ν, r, x, y),
the prover computes:
z1 = α+ ep
z2 = β + eq
w1 = x+ eµ
w2 = y + eν
v = r + e · (σ − νp),
and sends (z1, z2, w1, w2, v) to the verifier.

4. Given Ni, initial message (P,Q,A,B, T, σ), challenge e, and response (z1, z2, w1, w2, v), the
verifier accepts if and only if the following are true:

– sz1j t
w1
j = A · P e mod Nj

– sz2j t
w2
j = B ·Qe mod Nj

– Qz1tvj = T · (sNi
j tσj )

e mod Nj

– z1 ∈ ±
(
2ℓ+ε
√
Ni

)
– z2 ∈ ±

(
2ℓ+ε
√
Ni

)
.

Note that the 1st and 2nd checks involve fixed-base multiexponentiations.

3.6.2 Non-Interactive Version of the Proof

– We deterministically derive a challenge by hashing inputs that include state, the auxiliary
data Rj , the common input Ni, and the initial protocol message (P,Q,A,B, T, σ). We write
the resulting function as e = ChallengeNILfac(state, Rj , Ni, (P,Q,A,B, T, σ)).

– A proof is computed as follows: compute initial message (P,Q,A,B, T, σ) as described above;
compute e = ChallengeNILfac(state, Rj , Ni, (P,Q,A,B, T, σ)); next compute (z1, z2, w1, w2, v)
as described above, using challenge e. Output the proof ((P,Q,A,B, T, σ), (z1, z2, w1, w2, v)).
We write the resulting function as ProveNILfac(state, Rj , Ni, (pi, qi)).

12



– A party verifies a proof ϕ = ((P,Q,A,B, T, σ), (z1, z2, w1, w2, v)) by first computing

e = ChallengeNILfac(state, Rj , Ni, (P,Q,A,B, T, σ))

and then verifying as described above, using the challenge e. We write the resulting function
as VerifyNILfac(state, Rj , Ni, ϕ).

3.7 Πsch: Schnorr Proof of Knowledge

We describe the standard Schnorr proof of knowledge, and also set up notation that we will use in
what follows.

– Commitsch()→ (A;α)
α← Zq

A = α ·G
return (α,A)

– Challengesch()→ e
return e← Zq

– Provesch(α, e, x)→ z
return z = α+ ex mod q

– Verifysch(z,A, e,X)
accept iff z ·G = A+ e ·X.

4 Threshold Protocols

In this section we describe the various threshold protocols we have implemented. Overall, we have
the following protocols:

1. When a “signing cluster” is initialized, the signers in that cluster run a provisioning protocol
in which they each generate auxiliary information. That protocol is described in Section 4.1.

2. When key generation is requested in an initialized cluster, the signers in that cluster run a
distributed key-generation protocol. We have implemented protocols for both n-out-of-n key
generation (cf. Section 4.2.1), as well as t-out-of-n key generation (cf. Section 4.2.2).

3. A threshold of signers who have already generated a key can compute presignatures with
respect to that key. Protocols for doing that, in both the “non-threshold” (i.e., n-out-of-n)
and “threshold” (i.e., t-out-of-n) cases, are described in Section 4.3.

4. If a presignature has already been generated by some threshold of signers with respect to some
key, those signers can non-interactively compute a signature on a given message m using the
presignature they have computed. See Section 4.4.

13



4.1 Provisioning Protocol

This protocol is run to generate auxiliary information for each signer in a cluster.

Input. Party index i, context separation string sid, security level L.

Round 1.

– Generate 4κ-bit safe primes pi, qi using the algorithm from Section 2.1.

– Compute Ni = piqi and ϕ = (pi − 1)(qi − 1), and create a Paillier decryption key ski
using those values.

– Sample r ← Z∗
Ni

and λ← Zϕ, and compute ti = r2i mod Ni and si = tλi mod Ni.

– Compute ψ̂i = ProveNILprm(sid||i, (Ni, si, ti), (ϕ, λ)).

– Sample ρi, ui ← {0, 1}κ, and compute Vi = H(sid∥n∥i∥Ni∥si∥ti∥ψ̂i|ρi∥ui).
– Send Vi to all parties.

Round 2.

– Receive Vj from all parties.

– (Reliability check.) Optionally, if the reliability check is enabled:

– Compute hi = H(V0∥ . . . ∥Vn−1) and send hi to all parties.

– Upon receiving hj from all parties, abort if hi ̸= hj for some j ∈ [n].

– Send (Ni, si, ti, ψ̂i, ρi, ui) to all parties.

Round 3.

– Receive (Nj , sj , tj , ψ̂j , ρj , uj) from all parties.

– For all j ∈ [n], set Rj = (Nj , sj , tj); let R⃗ = (Rj)j∈[n].

– For j ̸= i:

– Assert Vj = H(sid∥n∥j∥Nj∥sj∥tj∥ψ̂j∥ρj∥uj).
– Assert Nj is at least 8 · κ− 1 bits in length

– Assert VerifyNILprm(sid||j, (Nj , sj , tj), ψ̂j).

– Construct Paillier encryption key from Nj .

– Compute ρ =
⊕

j ρj .

– Compute ψi = ProveNILmod(sid||i∥ρ,Ni, (pi, qi)).

– For j ̸= i do:

– Compute ϕji = ProveNILfac(sid||i∥ρ,Rj , Ni, (pi, qi)).

– Send (ψi, ϕ
j
i ) to Pj .

Output.

– Receive (ψj , ϕ
i
j) from all parties.

14



– For j ̸= i do:

– Assert VerifyNILmod(sid||j∥ρ,Nj , ψj).

– Assert VerifyNILfac(sid||j∥ρ,Ri, Nj , ϕ
i
j).

– For j ∈ [n] (including j = i), precompute a fixed-based multiexponentiation table Tj as

described in Section 2.4. Let T⃗ = (Tj)j∈[n].

– Return (pi, qi, R⃗, T⃗ ).

4.2 Distributed Key Generation

We implement two versions of distributed key generation. One generates a key along with an n-
out-of-n additive sharing of that key, and the other generates a key along with a t-out-of-n Shamir
secret sharing of that key. Note that only the former protocol is described in [1].

4.2.1 Non-Threshold (i.e., n-out-of-n) Key Generation

This protocol is based on [1, Figure 5], but we have added the option to replace the broadcast
channel with a reliable broadcast subroutine, and we added optional support of HD-wallets.

Input. Party index i, number of signers n, context separation string sid, security level L, curve
E with generator G of prime order q.

Round 1.

– Sample xi ← Zq, and set Xi = xi ·G.
– Sample ridi ← {0, 1}κ.
– Compute (Ai; τi) = Commitsch().

– (HD-wallets.)

– If HD-wallets support enabled, sample local chain code contribution ci ← {0, 1}256
(32-bytes string)

– Otherwise, set ci = ⊥
– Sample ui ← {0, 1}κ and set Vi = H(sid∥n∥i∥ridi∥Xi∥Ai∥ui∥ci).
– Send Vi to all parties.

Round 2. Upon receiving Vj from all parties:

– (Reliability check.) Optionally, if the reliability check is enabled:

– Compute hi = H(V0∥ . . . ∥Vn−1) and send hi to all parties.

– Upon receiving hj from all other parties: abort if hi ̸= hj for some j ∈ [n].

– Send (ridi, Xi, Ai, ui, ci) to all parties.

Round 3. Upon receiving (ridj , Xj , Aj , uj , cj) from all other parties:

– Abort if Vj ̸= H(sid∥n∥j∥ridj∥Xj∥Aj∥uj∥cj) for some j ∈ [n].

– Set rid =
⊕

j ridj .

15



– (HD-wallets.) If HD-wallets support enabled:

– Set chain code c =
⊕

j cj

– Set ei = H(sid∥i∥rid∥Xi∥Ai) and compute ψi = Provesch(τi, ei, xi).

– Send ψi to all parties.

Output. Upon receiving ψj from all other parties:

– For all j ̸= i:

– Set ej = H(sid∥j∥rid∥Xj∥Aj).

– Assert Verifysch(ψj , Aj , ej , Xj).

– Set X =
∑

j Xj , X⃗ = (Xj)j∈[n].

– Output (X,xi, X⃗, c).

4.2.2 Threshold (i.e., t-out-of-n) Key Generation

Input. Party index i, threshold parameter t, number of signers n, context separation string sid,
security level L, curve E with generator G of prime order q.

Round 1.

– Sample si,0, . . . , si,t−1 ← Zq. Set S⃗i = (si,k · G)k∈[t]. Let fi(x) =
∑

k∈[t] si,k · xk and
Fi(x) = f(x) ·G.

– Compute σi,j = fi(j + 1) for all j ∈ [n].

– Sample ridi ← {0, 1}κ.
– Compute (Ai, τi)← Commitsch().

– (HD-wallets.)

– If HD-wallets support enabled, sample local chain code contribution ci ← {0, 1}128
(32-bytes string)

– Otherwise, set ci = ⊥
– Sample ui ← {0, 1}κ and compute Vi = H(sid∥n∥i∥t∥ridi∥S⃗i∥Ai∥ui∥ci).
– Send Vi to all parties.

Round 2. Upon receiving Vj from all parties:

– (Reliability check.) Optionally, if the reliability check is enabled:

– Compute hi = H(V0∥ · · · ∥Vn−1), and send hi to all parties.

– Upon receiving hj from all parties: abort if hi ̸= hj for some j ∈ [n].

– Send (ridi, S⃗i, Ai, ui, ci) to all parties.

– For all j ̸= i, send σi,j to Pj via private channel.

Round 3. Upon receiving (ridj , S⃗j , Aj , uj , cj) and σj,i from all parties:

– For each party j ̸= i:

16



– Check that S⃗j has length t.

– Assert Vj = H(sid∥n∥j∥t∥ridj∥S⃗j∥Aj∥uj∥cj).
– Define Fj(x) =

∑
k∈[t] x

k · Sj,k.
– Assert σj,i ·G = Fj(i+ 1).

– Compute rid =
⊕

j∈[n] ridj .

– (HD-wallets.) If HD-wallets support enabled:

– Set chain code c =
⊕

j∈[n] cj

– Let F (x) =
∑

k∈[t] x
k ·

(∑
j∈[n] Sj,k

)
=

∑
j∈[n] Fj(x).

– For j ∈ [n], compute Xj = F (j + 1). Let X⃗ = (Xj)j∈[n].

– Compute xi =
∑

j∈[n] σj,i.

– Compute challenge ei = H(sid∥i∥rid∥Xi∥Ai).

– Compute Schnorr proof ψi = Provesch(τi, ei, σi).

– Send ψi to all parties.

Output. Upon receiving ψj from all parties:

– For j ̸= i: set ej = H(sid|j∥rid∥Xj∥Aj) and assert Verifysch(ψj , Aj , ej , Xj).

– Compute Y =
∑

j∈[n] Sj,0.

– Create identity mapping I : [n]→ Zq \ 0, I(i) = i+ 1.

– Return (Y, xi, X⃗, I, c).

4.3 Presigning

We implemented both non-threshold and threshold versions of presigning. The non-threshold ver-
sion assumes the n parties running the protocol have additive shares of the private key. The
threshold version of the protocol, which is not described in [1], first maps the key shares (which are
a t-out-of-n Shamir sharing of the private key) to a t-out-of-t sharing of the key using Lagrange
interpolation and then runs the non-threshold protocol among the t parties.

4.3.1 Non-Threshold (n-out-of-n) Presigning

The following protocol is based on [1, Figure 7], although we have corrected some typos and
eliminated some extraneous parts. (In particular, we do not have identifiable abort.)

Input. Number of parties n, party index i ∈ [n], secret share xi, list of signers’ public-key shares
X⃗ = {Xj}j∈[n], Paillier private key ski, list of signers’ auxiliary data R⃗ = ((sj , tj , Nj))j∈[n],
context separation string sid, security level L, elliptic curve E with generator G.

Round 1.

– Sample ki, γi ← Zq, ρi, vi ← Z∗
Ni
, and set Gi = enccrtski

(γi; vi), Ki = enccrtski
(ki; ρi).

– For j ̸= i compute ψ0
j,i = ProveNILenc(sid∥i, Rj , (Ni,Ki), (ki, ρi)).

17



– Send (Ki, Gi) to all parties, and for j ̸= i send ψ0
j,i to Pj .

Round 2. Upon receiving (Kj , Gj , ψ
0
i,j) from all parties, do:

– (Reliability check.) Optionally, if the reliability check is enabled:

– Compute hi = H(K0∥G0∥ · · · ∥Kn−1∥Gn−1) and send hi to all parties.

– Upon receiving hj from all parties, abort if hi ̸= hj for some j ∈ [n].

– For j ̸= i, assert VerifyNILenc(sid∥j, Ri, (Nj ,Kj), ψ
0
i,j).

– Compute Γi = γi ·G.
– For j ̸= i do:

– Sample ri,j , r̂i,j ← ZNi , si,j , ŝi,j ← ZNj , and βi,j , β̂i,j ← ±2ℓ
′
.

– Compute Dj,i = (γi ⊙Kj)⊕ encNj (−βi,j ; si,j) and Fj,i = enccrtski
(−βi,j ; ri,j).

– Compute D̂j,i = (xi ⊙Kj)⊕ encNj (−β̂i,j ; ŝi,j) and F̂j,i = enccrtski
(−β̂i,j ; r̂i,j).

– Compute ψj,i = ProveNI
E,L
aff-g(sid∥i, Rj , (Nj , Ni,Kj , Dj,i, Fj,i,Γi); (γi,−βi,j , si,j , ri,j))

and ψ̂j,i = ProveNI
E,L
aff-g(sid∥i, Rj , (Nj , Ni,Kj , D̂j,i, F̂j,i, Xi); (xi,−β̂i,j , ŝi,j , r̂i,j)).

– Compute ψ′
j,i = ProveNI

E,L
log∗(sid∥i, Rj , (Ni, Gi,Γi, G); (γi, vi)).

– Send (Γi, Dj,i, Fj,i, D̂j,i, F̂j,i, ψj,i, ψ̂j,i, ψ
′
j,i) to Pj .

Round 3.

1. Upon receiving (Γj , Di,j , Fi,j , D̂i,j , F̂i,j , ψi,j , ψ̂i,j , ψ
′
i,j) from Pj , do:

– Assert VerifyNIE,Laff-g(sid∥j, Ri, (Ni, Nj ,Ki, Di,j , Fi,j ,Γj), ψi,j).

– Assert VerifyNIE,Laff-g(sid∥j, Ri, (Ni, Nj ,Ki, D̂i,j , F̂i,j , Xj), ψ̂i,j).

– Assert VerifyNIE,Llog∗(sid∥j, Ri, (Nj , Gj ,Γj , G), ψ
′
i,j).

2. Compute Γ =
∑

j∈[n] Γj and ∆i = ki · Γ.
3. For j ̸= i, do:

– Compute αi,j = dec(pi,qi)(Di,j) and α̂i,j = dec(pi,qi)(D̂i,j).

– Compute ψ′′
j,i = ProveNI

E,L
log∗(sid∥i, Rj , (Ni,Ki,∆i,Γ); (ki, ρi)).

4. Compute δi = γiki +
∑

j ̸=i(αi,j + βi,j) mod q and χi = xiki +
∑

j ̸=i(α̂i,j + β̂i,j) mod q.

5. Send (δi,∆i, ψ
′′
j,i) to each Pj .

Output

1. Upon receiving (δj ,∆j , ψ
′′
i,j) from Pj , assert VerifyNI

E,L
log∗(sid∥j, Ri, (Nj ,Kj ,∆j ,Γ), ψ

′′
i,j).

2. Compute δ =
∑

j δj , and do:

– Assert δ ·G =
∑

j ∆j .

– Set R = δ−1 · Γ and output (R, ki, χi).

18



4.3.2 Threshold (t-out-of-n) Presinging

Input. Size of signing set t, identities of parties in signing set, index i ∈ [t], index map4 S : [t]→ [n],
key share KS(i), context separation string sid, security level L, curve E with generator G.

HD-wallets inputs: additive shift ∈ Fq
5 (shift = 0 disables HD derivation)

Setup. The key share KS(i) contains min signers, number of key holders n, secret share x′S(i),

parties’ public shares X⃗ ′ = (X ′
j)j∈[n], a map I : [n] → Fq \ {0}, Paillier secret key skS(i),

parties’ Paillier keys N⃗ ′ = (N ′
j)j∈[n], and parties’ auxiliary information R⃗′ = (sj , tj , N̂)j∈[n].

Step 1. Set ski = skS(i) and R⃗ = (R′
S(j))j∈[n]. Then:

– If shares are additive6 shares of the private key, set xi = x′S(i), X⃗ = (X ′
S(j))j∈[n].

– If shares are Shamir secret shares of the private key:

– For j ∈ [t], compute Lagrange coefficient λj =
∏

m∈[t]\{j}

I(S(m))
I(S(m))−I(S(j)) mod q.

– Compute xi = λi · x′S(i).

– For j ∈ [n], compute Xj = λj ·X ′
S(j); then set X⃗ = {Xj}j∈[t].

Step 2. (HD-wallets) If HD-wallets support enabled:

– Set X0 := X0 + shift ·G
– If i = 0, set x0 := x0 + shift

– Note: output signature will be valid for public key Y + shift ·G

Step 3. Call the non-threshold presigning protocol from the previous section using inputs t, i, xi, X⃗,
ski, R⃗, sid, L,E.

4.4 Signing

The signing protocol has two parts: one that takes the output from the presignature protocol and
a hashed message and produces a partial signature, and another that takes partial signatures and
combines them to produce a signature.

Local signing. The input is a presignature Si = (R, ki, χi), a hashed message m, and, if HD
wallets support is enabled, additive shift ∈ Fq

5 (shift = 0 disables HD derivation). Do:

– If HD-wallets support enabled:
Set χ := χ+ k · shift

– Set r = R|x and σi = km+ rχ.

– Output (r, σi).

4S(i) is the index that Pi had at key-generation time.
5Deriving additive shift is up to specific standard of HD-wallets, e.g. see [4] or [2]
6In this case we have t = n.

19



Combining presignatures. The input is the public key Y , partial signatures {(ri, σi)}n−1
i=0 , and

hashed message m. The function does:

– Assert r0 = r1 = · · · = rn−1.

– Let σ =
∑

j σj .

– If (r, σ) is not a valid signature on hashed message m with respect to public key Y , then
abort. Otherwise, output (r, σ).

References

[1] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled. UC
Non-Interactive, Proactive, Threshold ECDSA with Identifiable Aborts. Cryptology ePrint
Archive, Paper 2021/060, 2021. Available at https://eprint.iacr.org/2021/060.

[2] Jochen Hoenicke and Pavol Rusnak. Universal private key derivation from master private key.
Available at https://github.com/satoshilabs/slips/blob/master/slip-0010.md.

[3] M.J. Wiener. Safe prime generation with a combined sieve. Available at https://eprint.

iacr.org/2003/186.pdf.

[4] Pieter Wuille. Hierarchical deterministic wallets. Available at https://github.com/bitcoin/
bips/blob/master/bip-0032.mediawiki.

20

 https://eprint.iacr.org/2021/060
https://github.com/satoshilabs/slips/blob/master/slip-0010.md
 https://eprint.iacr.org/2003/186.pdf
 https://eprint.iacr.org/2003/186.pdf
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

	Introduction
	Notation and Preliminaries
	Safe-Prime Generation
	Using the Chinese Remainder Theorem
	Paillier Encryption Scheme
	Speeding up Fixed-Based Multiexponentiation Using Preprocessing
	Security Parameters
	Security Guidelines


	Zero-Knowledge Proofs
	enc: Paillier Encryption in Range
	Interactive Version of the Proof
	Non-Interactive Version of the Proof

	aff-g: Paillier Affine Operation with Group Commitment in Range
	Interactive Version of the Proof
	Non-Interactive Version of the Proof

	mod: Paillier-Blum Modulus
	Interactive Version of the Proof
	Non-Interactive Version of the Proof

	prm: Ring-Pedersen Parameters
	Interactive Version of the Proof
	Non-Interactive Version of the Proof

	log*: Group Element vs. Paillier Encryption in Range
	Interactive Version of the Proof
	Non-Interactive Version of the Proof

	fac: No Small Factor Proof
	Interactive Version of the Proof
	Non-Interactive Version of the Proof

	sch: Schnorr Proof of Knowledge

	Threshold Protocols
	Provisioning Protocol
	Distributed Key Generation
	Non-Threshold (i.e., n-out-of-n) Key Generation
	Threshold (i.e., t-out-of-n) Key Generation

	Presigning
	Non-Threshold (n-out-of-n) Presigning
	Threshold (t-out-of-n) Presinging

	Signing


